Atmospheric Physics

Posted by Alex on June 1, 2012  •  Comments  • 

Laws of Thermodynamics

1st Law of Thermo

\[ \begin{eqnarray} Q &=& \frac{dU}{dt} - W \\ J &=& c_v\frac{dT}{dt} + p\frac{d\alpha}{dt} \\ J &=& c_p\frac{dT}{dt} - \alpha\frac{dp}{dt} \end{eqnarray} \]

2nd Law of Thermo

\[ \frac{dS}{dt} \geq \frac{Q}{T} \]

3rd Law of Thermo

\[ \lim_{T \to 0} S=0 \]

Properties of Ideal Gases

Absolute Temperature

\[ T = \frac{1}{3k_B} \left \langle mv^2 \right \rangle \]

Absolute Pressure

\[ p = \frac{1}{3} \frac{N}{V} \left \langle mv^2 \right \rangle \]

Ideal Gas Law

\[ pV = Nk_BT \]

Dalton's Law

\[ p = \sum_{i=1}^n p_i \]

Exponential Decay

\[ p \simeq p_0 \exp{ \left( -\frac{z}{H} \right) } \] \[ \rho \simeq \rho_0 \exp{ \left( -\frac{z}{H} \right) } \]

Scale Height

\[ H = \frac{R_d \bar{T}}{g} \]

Hypsometric Equation

\[ z_2 - z_1 = \frac{R_d \bar{T}}{g} \ln{ \left( \frac{p_1}{p_2} \right) } \]

Molecular Speeds

Maxwell-Boltzmann Function

\[ f(v) = A \cdot 4\pi v^2 \exp{ \left( -\frac{mv^2}{2k_BT} \right) } \] \[ A = \left( \frac{m}{2\pi k_BT} \right)^{3/2} \]

Most Probable Speed

\[ v_p = \sqrt{ \frac{2k_BT}{m} } \]

Mean Speed

\[ \left \langle v \right \rangle = \frac{2}{\sqrt{\pi}} v_p \]

RMS Speed

\[ v_{rms} = \sqrt{ \left \langle v^2 \right \rangle} = \sqrt{ \frac{3}{2} } v_p \]

Escape Speed

\[ v_{esc} = \sqrt{ 2gR_E } \]

Intermolecular Distance

\[ d = n^{-1/3} \]

Material Properties

Specific Heat (Volume)

\[ C_v = \left( \frac{dQ}{dT} \right)_{v} = \frac{dU}{dT} \]

Specific Heat (Pressure)

\[ C_p = \left( \frac{dQ}{dT} \right)_{p} = \frac{dH}{dT} \]

Thermal Expansion

\[ \alpha = \frac{1}{V}\frac{\partial V}{\partial T} \]

Compressibility

\[ \beta = -\frac{1}{V}\frac{\partial V}{\partial p} \]

Thermodynamic Potentials

Gibbs Free Energy

\[ G = H - TS \]

Enthalpy

\[ H = U + pV \]

Helmholz Free Energy

\[ F = U - TS \]

Basic Relations

Thermodynamic Equilibrium

Thermal Equilibrium

\[ T' = T'' \]

Mechanical Equilibrium

\[ p' = p'' \]

Chemical Equilibrium

\[ \mu' = \mu'' \]

First Law of Thermo

\[ \begin{eqnarray} \delta Q &=& dU + \delta W \\ \delta q &=& c_vdT + pd\alpha \\ \delta q &=& c_pdT - \alpha dp \\ \end{eqnarray} \]

Euler's Equation

\[ TS = U + pV - \sum_{k=1}^{c} \mu_k \eta_k \]

Gibbs-Duhem Relation

\[ \sum \chi_k d\mu_k = \nu dp - sdT \]

Gibbs Phase Rule

\[ F = C - P + 2 \]

Chemical Potential
(1 component)

\[ d\mu = \nu dp - sdT \]

Water Properties

Clausius-Clapyron Equation

\[ \frac{dp}{dT} = \frac{L_v}{T\Delta \nu} \] \[ e_s(T) = e_0 \exp{\left[ \frac{L_v}{R_v} \left( \frac{1}{T_0} - \frac{1}{T} \right) \right]} \] \[ e_i(T) = e_0 \exp{\left[ \frac{L_s}{R_v} \left( \frac{1}{T_0} - \frac{1}{T} \right) \right]} \]

Phase Lines

\[ \frac{de_s}{dT} = \frac{L_v}{T\left( \nu_g - \nu_l \right)} > 0 \] \[ \frac{de_i}{dT} = \frac{L_s}{T\left( \nu_g - \nu_s \right)} > 0 \] \[ \frac{dp_{l/s}}{dT} = \frac{L_f}{T\left( \nu_l - \nu_s \right)} < 0 \]

Dew Point

\[ e = e_s(T_d) \]

Frost Point

\[ e = e_i(T_f) \]

Bergeron-Findeison Process

\[ e_s > e > e_i \]

Evaporative Cooling

\[ dq = -L_v dw \]

Mixing Ratio

\[ w = \frac{m_v}{m_d} = \frac{q}{1-q} \simeq \frac{\epsilon e}{p} \]

Specific Humidity

\[ q = \frac{m_v}{m_d+m_v} = \frac{w}{1+w} \]

Virtual Temperature

\[ T_v = T\left(1+0.61w\right) \]

Potential Temperature

\[ \theta = T \left( \frac{1000}{p} \right)^{R_d/c_p} \]

Virtual Potential Temperature

\[ \theta_v = T_v \left( \frac{1000}{p} \right)^{R_d/c_p} \]

Equivalent Potential Temperature

\[ \theta_e = \theta \left( \frac{L_v}{c_p} \frac{w_s}{T} \right) \]

Lifted Condensation Level

\[ z_{LCL} = \frac{T_0 - T_d}{\Gamma_d - \Gamma_{dew}} = \frac{T_0 - T_d}{8} \]

Cloud Physics

Raoult's Law

\[ e_{s,sol} = x_i e_{s,pure} \]

Henry's Law

\[ \frac{\left[ A\left(l\right) \right]}{\left[ A\left(g\right) \right]} = H_A^*RTL \]

Mole Fraction

\[ x_i = \frac{n_i}{n_{tot}} \]

Kelvin Equation

\[ e_{s,a} = a_w e_{s,\infty} \exp{\left( \frac{2\nu_w \sigma}{RTr} \right)} \]

Köhler Equation

\[ \frac{e'(r)}{e_s(T)} = 1 + \frac{a}{r}-\frac{b}{r^3} \] \[ a = \frac{3.3\times10^{-5}}{T} \] \[ b = \frac{4.3iM}{m_s} \]

Stokes Flow

\[ \left( \vec{u} \cdot \vec{\nabla} \right)\vec{u} = 0 \]

Oseen Flow

\[ \left( \vec{u} \cdot \vec{\nabla} \right)\vec{u} = \left( \vec{u_{\infty}} \cdot \vec{\nabla} \right)\vec{u} \]

Growth by Diffusion

\[ \frac{dM}{dt} = 4\pi a D_v \left( \rho_{v,\infty}-\rho_{v,a} \right) \]