Atmospheric Radiation

Posted by Alex  •  Comments  • 

Properties of Radiation

Wavelength

\[ \lambda = \frac{c}{\nu} \]

Maxwell's Equations

\[ \vec{\nabla} \cdot \vec{E} = 0\ \ \ (Gauss's\ Law) \] \[ \vec{\nabla} \cdot \vec{H} = 0\ \ \ (Gauss's\ Law) \] \[ \vec{\nabla} \times \vec{E} = -\frac{\mu}{c} \frac{\partial \vec{H}}{\partial t}\ \ \ (Faraday's\ Law) \] \[ \vec{\nabla} \times \vec{H} = \frac{\varepsilon}{c} \frac{\partial \vec{E}}{\partial t}\ \ \ (Amp\grave{e}re's\ Law) \]

Speed of Light

\[ c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \]

Complex Index of Refraction

\[ N = \sqrt{\frac{\mu \varepsilon}{\mu_0 \varepsilon_0}} = \frac{c}{c'} \] \[ N = n_r + i\, n_i \]

Volume Absorption Coefficient

\[ \beta_a = \frac{4 \pi\, \nu\, n_i}{c} = \frac{4 \pi\, n_i}{\lambda} \]

Photon Energy

\[ E = h \nu \]

Broadband Flux

\[ F(\lambda_1 , \lambda_2) = \int_{\lambda_1}^{\lambda_2} F_{\lambda}\, d\lambda \]

Solid Angle

\[ \omega = \iint \limits_{\phi\ \theta} \sin{\theta}\, d\theta\, d\phi \]

Intensity

\[ I = \frac{\delta F}{\delta \omega} \]

Stokes Vector

\[ \vec{I} = \begin{pmatrix} I\\ Q\\ U\\ V \end{pmatrix} \]

Upward Flux

\[ F^{\uparrow} = \int_{0}^{2\pi} \int_{0}^{\pi/2} I^{\uparrow}(\theta,\phi) \cos{\theta} \sin{\theta}\, d\theta\, d\phi \]

Downward Flux

\[ F^{\downarrow} = - \int_{0}^{2\pi} \int_{\pi/2}^{\pi} I^{\downarrow}(\theta,\phi) \cos{\theta} \sin{\theta}\, d\theta\, d\phi \]

Net Flux

\[ F^{net} = F^{\uparrow} - F^{\downarrow} \]

Insolation

\begin{eqnarray} W &=& S_0 \left( \frac{a}{r} \right)^2 \int_{t_{sunrise}}^{t_{sunset}} \cos{\theta_0 (t)}\, dt \\ &=& S_0 \left( \frac{a}{r} \right)^2 \int_{-H}^{H} \left( \sin{\phi}\sin{\delta} + \cos{\phi}\cos{\delta}\sin{h} \right)\, \frac{dh}{\omega} \\ &\simeq& \frac{S_0}{\pi} \left( \frac{a}{r} \right)^2 \left( H\sin{\phi}\sin{\delta} + \cos{\phi}\cos{\delta}\sin{H} \right) \end{eqnarray}

Solar Constant

\[ S_0 = 1370 \, Wm^{-2} \]

Sun-Earth Factor

Spring Equinox

\[ \left( \frac{a}{r} \right)^2 \simeq 1 \]

Summer Solstice

\[ \left( \frac{a}{r} \right)^2 \simeq 1.03 \]

Fall Equinox

\[ \left( \frac{a}{r} \right)^2 \simeq 1 \]

Winter Solstice

\[ \left( \frac{a}{r} \right)^2 \simeq 0.97 \]

Solar Declination

Spring Equinox

\[ \delta = 0 \]

Summer Solstice

\[ \delta = \frac{23.5}{180}\pi \]

Fall Equinox

\[ \delta = 0 \]

Winter Solstice

\[ \delta = \frac{-23.5}{180}\pi \]

Half-Day

Midnight

\[ H = \pi \]

6 AM

\[ H = \frac{\pi}{2} \]

Noon

\[ H = 0 \]

6 PM

\[ H = \frac{\pi}{2} \]

Electromagnetic Spectrum

Electromagnetic Waves

Gamma < 0.01 nm
X-Ray 0.01 - 10 nm
Ultraviolet 10 - 400 nm
Visible 0.4 - 0.7 µm
Infrared 0.7 µm - 1 mm
Microwave 1 mm - 1 m
Radio > 1 mm

Ultraviolet Bands

Extreme UV 10 - 121 nm
Hydrogen Lyman-alpha UV 121 - 122 nm
UV-C 100 - 280 nm
UV-B 280 - 320 nm
UV-A 320 - 400 nm

Visible Bands

Violet 400 - 425 nm
Blue 425 - 500
Green 500 - 575
Yellow 575 - 600
Orange 600 - 625
Red 625 - 700

Infrared Bands

NIR 0.7 - 1 µm
SWIR 1 - 3 µm
MWIR 3 - 8 µm
LWIR 8 - 15 µm
FIR 15 - 1000 µm

Microwave Bands

HF 3 - 30 MHz
VHF 30 - 300 MHz
UHF 0.3 - 3 GHz
L 1 - 2 GHz
S 2 - 4
C 4 - 8
X 8 - 12
Ku 12 - 18
K 18 - 26.5
Ka 26.5 - 40
V 40 - 75
W 75 - 110

Wavenumber

\[ \tilde{\nu} = \frac{1}{\lambda} = \frac{\nu}{c} \]

Reflection and Refraction

Transmittance

\[ t(x) = \frac{I(x)}{I_0} = e^{-\beta_a x} \]

Absorption Depth

\[ D = \frac{1}{\beta_a} = \frac{\lambda}{4 \pi\, n_i} \]

Dielectric Constant

\[ \epsilon = \frac{\varepsilon}{\varepsilon_0} = N^2 \]

Snel's Law

\[ \frac{\sin{\Theta_t}}{N_1} = \frac{\sin{\Theta_i}}{N_2} \]

Fresnel Relations

\[ R_{\parallel} = \left| \frac{\cos{\Theta_t} - m\cos{\Theta_i}}{\cos{\Theta_t} + m\cos{\Theta_i}} \right|^2 \] \[ R_{\perp} = \left| \frac{\cos{\Theta_i} - m\cos{\Theta_t}}{\cos{\Theta_i} + m\cos{\Theta_t}} \right|^2 \]

Angle of Transmittance

\[ \cos{\Theta_t} = \sqrt{1 - \left( \frac{\sin{\Theta_i}}{m} \right)^2 } \]

Complex Index of Refraction

\[ m = \frac{N_2}{N_1} \]

Total Reflectivity

\[ R = R_{\parallel} + R_{\perp} \]

Brewster Angle

\[ \Theta_B = \sin^{-1}{ \sqrt{ \frac{m^2}{m^2+1} }} \]

Natural Surfaces

Reflectivity and Absorptivity

\[ a_{\lambda} + r_{\lambda} = 1 \]

Reflected Flux

\[ F_{\lambda,r} = r_{\lambda}F_{\lambda,0} \]

Absorbed Flux

\[ F_{\lambda,abs} = (1-r_{\lambda}) F_{\lambda,0} = a_{\lambda} F_{\lambda,0} \]

Graybody Reflectivity

\[ r = \frac{ F_{r} }{ F_{i} } \]

Graybody Absorptivity

\[ a = 1 - r \]

Shortwave Albedo

\[ r_{sw} = 1 - a_{sw} \]

Reflected Isotropic Intensity

\[ I^{\uparrow} = \frac{F_r}{\pi} = \frac{rF_i}{\pi} = \frac{rS_0 \cos{\theta_i}}{\pi} \]

Bidirectional Reflection Function (BDRF)

\[ \rho (\theta_i, \phi_i, \theta_r, \phi_r) = \frac{I^{\uparrow}(\theta_r, \phi_r)}{S_0 \cos{\theta_i}} \]

Thermal Emission

Planck's Function

\[ B_{\lambda}(T) = \frac{2hc^2}{\lambda^5 \left( e^{hc/k_B \lambda T}-1 \right) } \]

Wien's Displacement Law

\[ \lambda_{max} = \frac{2897}{T} \]

Stefan-Boltzmann Law

\[ F_{BB}(T) = \sigma T^4 \]

Rayleigh-Jeans Approximation

\[ B_{\lambda}(T) \simeq \frac{2ck_B}{\lambda^4}T \ \ \ \ \ (\lambda > 1mm) \]

Monochromatic Emissivity

\[ \varepsilon_{\lambda} = \frac{I_{\lambda}}{B_{\lambda}(T)} \]

Graybody Emissivity

\[ \varepsilon = \frac{F}{\sigma T^4} \]

Kirchoff's Law

\[ \varepsilon_{\lambda}(\theta,\phi) = a_{\lambda}(\theta,\phi) \]

Brightness Temperature

\[ T_B = B_{\lambda}^{-1} \left[ I_{\lambda} \right] = B_{\lambda}^{-1} \left[ \varepsilon B_{\lambda}(T) \right] \] \[ T_B = \varepsilon T \ \ \ \ \ (\lambda > 1mm) \]

Radiative Cooling

\[ \frac{dT}{dt}_{rad} \simeq \frac{F_{net,\ base} - F_{net,\ top}}{c_p \rho \Delta z} \]

Atmospheric Transmission

Volume Extinction Coefficient

\[ \beta_e = \beta_a + \beta_s \]

Single Scatter Albedo

\[ \tilde{\omega} = \frac{\beta_s}{\beta_e} = \frac{\beta_s}{\beta_s + \beta_a} \]

Beer's Law

\[ I_{\lambda}(s_2) = I_{\lambda}(s_1) \exp \left[ - \int_{s_1}^{s_2} \beta_e (s)\, ds \right] = I_{\lambda}(s_1) e^{-\tau\, (s_1,s_2)} = I_{\lambda}(s_1) t\, (s_1,s_2) \]

Optical Thickness

\[ \tau\, (s_1,s_2) = \int_{s_1}^{s_2} \beta_e (s)\, ds \] \[ \tau\, (s_1,s_N) = \tau\, (s_1,s_2) + \tau\, (s_2,s_3) + \cdots + \tau\, (s_{N-1},s_N) \]

Transmittance

\[ t\, (s_1,s_2) = e^{-\tau\, (s_1,s_2)} \] \[ t\, (s_1,s_N) = t\, (s_1,s_2) \cdot t\, (s_2,s_3) \cdot \cdots \cdot t\, (s_{N-1},s_N) \]

Absorptance

\[ a = 1-t \ \ \ \ \ (\tilde{\omega} = 0) \]

Volume Coefficients

\[ \beta_e = \rho k_e = N \sigma_e \] \[ \beta_a = \rho k_a = N \sigma_a \] \[ \beta_s = \rho k_s = N \sigma_s \] \[ \left[ \frac{m^2}{m^3} \right] = \left[ \frac{m^2}{kg} \right] \left[ \frac{kg}{m^3} \right] = \left[ \frac{1}{m^3} \right] \left[ \frac{m^2}{1} \right] \]

Extinction Cross-Section

\[ \sigma_e = Q_e\, A \]

Path Distance

\[ s = \frac{z}{\mu} \]

Propagation Direction

\[ \mu = \left| \cos{\theta} \right| \]

Optical Thickness

\[ \tau\, (z_1,z_2) = \int_{z_1}^{z_2} \beta_e (z)\, dz \] \[ \tau\, (z_1,z_N) = \tau\, (z_1,z_2) + \tau\, (z_2,z_3) + \cdots + \tau\, (z_{N-1},z_N) \]

Transmittance

\[ t\, (z_1,z_2) = e^{-\tau\, (z_1,z_2)/\mu} \] \[ t\, (z_1,z_N) = t\, (z_1,z_2) \cdot t\, (z_2,z_3) \cdot \cdots \cdot t\, (z_{N-1},z_N) \]

Absorption Bands

O2

H2O

CO2

CH4

N2O

O3

60 GHz 22 GHz 2.8 µm 3.3 µm 4.5 µm 9.6 µm
(5 mm) (13.6 mm)
118 GHz 183 GHz 4.3 µm 7.8 µm 7.8 µm
(2.5 mm) (1.6 mm)
15 µm 17 µm

Mass Path

\[ u(z) = \int_{z}^{\infty} \rho (z')\, dz' \]

Weighting Function

\[ W(z) = \frac{dt(z)}{dz} \]

Total Transmittance

\[ t = t_{dir} + t_{diff} \]

Radiative Conservation

\[ t_{dir} + t_{diff} + r + a = 1 \]

Direct Transmittance

\[ t_{dir} = e^{-\tau^* / \mu} \]

Liquid Water Path

\[ L = \int_{z_{bot}}^{z_{top}} \rho_w (z)\, dz = \int_{z_{bot}}^{z_{top}} \int_{0}^{\infty} n(r) \left[ \rho_l \frac{4 \pi}{3}r^3 \right] \, dr\, dz \]

Total Droplets

\[ N = \int_{0}^{\infty} n(r) \, dr \]

Surface Area of Droplets

\[ A_{sfc} = \int_{0}^{\infty} n(r) \left[ 4 \pi r^2 \right] \, dr \]

Liquid Water Content

\[ \rho_w = \int_{0}^{\infty} n(r) \left[ \rho_l \frac{4 \pi}{3}r^3 \right] \, dr \]

Volume Extinction Coefficient

\[ \beta_e = \int_{0}^{\infty} n(r) \left[ Q_e(r) \pi r^2 \right] \, dr \]

Mass Extinction Coefficient

\[ k_e = \frac{\beta_e}{\rho_w} \simeq \frac{3}{2 \rho_l r_{eff}} \]

Cloud Optical Thickness

\[ \tau^* \simeq \frac{3L}{2 \rho_l r_{eff}} \]

Atmospheric Emission

Schwarzchild's Equation

\[ \frac{dI}{ds} = \beta_a (B-I) \] \[ I(0) = I(\tau')e^{-\tau'} + \int_{0}^{\tau'} Be^{-\tau}\, d\tau \]

Non-Scattering RTE (Down)

\[ I^{\downarrow }(0) = I^{\downarrow}(\infty) t^* + \int_{0}^{\infty} B(z) W^{\downarrow}(z) \, dz \] \[ W^{\downarrow }(z) = -\frac{dt(0,z)}{dz} = \frac{\beta_a(z)}{\mu}t(0,z) \]

Non-Scattering RTE (Up)

\[ I^{\uparrow }(\infty) = I^{\uparrow}(0) t^* + \int_{0}^{\infty} B(z) W^{\uparrow}(z) \, dz \] \[ W^{\uparrow }(z) = \frac{dt(z,\infty)}{dz} = \frac{\beta_a(z)}{\mu}t(z,\infty) \]

Molecular Absorption

Dominant Transitions

Rotation

\[ > 20\ \mu m \]

Vibration

\[ 1-20\ \mu m \]

Electronic

\[ < 1\ \mu m \]

Linear and Rotational Motion

Linear

Rotational

Force

\[ F=ma \] \[ T = I \frac{d\omega}{dt} \]

Kinetic Energy

\[ KE = \frac{1}{2}mv^2 \] \[ KE = \frac{1}{2}I\omega^2 \]

Momentum

\[ p=mv \] \[ L=I\omega \]

Rotational Frequency

\[ \nu = \frac{\Delta E}{h} = \frac{h}{4\pi^2 I}(J+1) \]

Broadband Fluxes

Equivalent Width

\[ W = \int_{\Delta \tilde{\nu}_i} 1-e^{-\tau_{\tilde{\nu}}} \, d\tilde{\nu} = \mathcal{A} \Delta \tilde{\nu} = (1-\mathcal{T}) \Delta \tilde{\nu} \]

Equivalent Width Limits

Weak Line Limit

\[ W = Su \]

Strong Line Limit

\[ W = 2\sqrt{S\alpha_L u} \]

Radiative Heating Rate

\[ \mathcal{H} = -\frac{1}{\rho(z) c_p} \frac{\partial F^{net}}{\partial z}(z) \]

RTE with Scattering

Scattering Phase Function

\[ \frac{1}{4\pi} \int_{4\pi} p(\hat{\Omega}',\hat{\Omega}) \, d\omega' = 1 \] \[ \frac{1}{2} \int_{-1}^{1} p(\cos{\Theta}) \, d\cos{\Theta} = 1 \]

Isotropic Scattering

\[ p(\cos{\Theta}) = 1 \]

Scattering RTE

\[ dI = dI_{ext} + dI_{emit} + dI_{scat} \] \[ dI = -\beta_e Ids + \beta_a Bds + \frac{\beta_s}{4\pi} \int_{4\pi} p(\hat{\Omega}',\hat{\Omega}) \, d\omega' \] \[ \frac{dI(\hat{\Omega})}{d\tau} = I(\hat{\Omega}) - \left( 1-\tilde{\omega} \right)B - \frac{\tilde{\omega}}{4\pi} \int_{4\pi} p(\hat{\Omega}',\hat{\Omega}')\, I(\hat{\Omega}) \, d\omega' \]

Asymmetry Parameter

\[ g = \frac{1}{4\pi} \int_{4\pi} p(\cos{\Theta}) \cos{\Theta} \, d\omega \]

Henyey-Greenstein Phase Function

\[ p_{HG}(\cos{\Theta}) = \frac{1-g^2}{\left( 1+g^2-2g\cos{\Theta} \right)^{3/2}} \]

Single-Scattering RTE

\[ \mu \frac{dI(\mu,\phi)}{d\tau} = I(\mu,\phi) - \frac{\tilde{\omega}}{4\pi} \int_{0}^{2\pi} \int_{-1}^{1} p(\mu,\phi;\mu',\phi')\, I(\mu',\phi') \, d\mu' d\phi' \]

Full RTE

\begin{eqnarray} \mu \frac{dI(\mu,\phi)}{d\tau} &=& I(\mu,\phi) - (1-\tilde{\omega})B \\ && - \frac{\tilde{\omega}}{4\pi} \int_{0}^{2\pi} \int_{-1}^{1} p(\mu,\phi;\mu',\phi')\, I(\mu',\phi') \, d\mu' d\phi' \\ && -\frac{\tilde{\omega}}{4\pi} \pi F_0 p(\mu,\phi;\mu',\phi')\, I(\mu',\phi') \, d\mu' d\phi' \end{eqnarray}

RTE Solution Methods

Approximate Methods

Single Scattering
Two-Stream
Eddington

Exact Methods

Discrete-Ordinate
Adding-Doubling
Monte Carlo
Successive Orders of Scattering

Size Parameter

\[ x = \frac{2 \pi r}{\lambda} \]

Scattering Types

Rayeigh scattering:

\[ x < 0.1 \]

Mie scattering:

\[ 0.1 < x < 1000 \]

Geometric scattering:

\[ x > 1000 \]

Rayleigh Phase Function

\[ p(\Theta) = \frac{3}{4} \left( 1 + \cos^2{\Theta} \right) \]

Scattering Cross-Section

\[ \sigma_s \propto \frac{r^6}{\lambda^4}\ \ \ \ (Rayleigh\ Scattering) \] \[ \frac{\sigma_{s,\ blue}}{\sigma_{s,\ red}} \simeq \frac{\left( 650 \right)^4}{\left( 450 \right)^4} \simeq 4 \]

Reflectivity Factor

\[ Z = \int_{0}^{\infty} n(D) D^6 \, dD \] \[ Z\ \left[ dBZ \right] = 10\log_{10}(Z) \]

Equivalent Reflectivity Factor

\[ Z \simeq 0.20Z\ \ \ \ (Ice\ Particles) \]

Marshall-Palmer Size Distribution

\[ n(D_0) = n_0 \exp{(-\Lambda D_0)} \] \[ n_0 = 8000 \] \[ \Lambda = 4.1R^{-0.21} \]

Z-R Relationship

\[ Z = 200R^{1.6} \]

Depolarization Ratio

\[ \delta = \frac{I_{\perp}}{I_{\parallel}} \]

Microwave Radiometer

\[ T_B = \varepsilon T = \left[ 1-e^{-\tau} \right]T \]

Total Optical Thickness

\[ \tau \simeq \tau_O + k_LL + k_VV \] \[ \tau \simeq Oxygen + Liquid + Vapor \]

Multiple Scattering

Azimuthally Averaged RTE

\[ \mu \frac{dI(\mu,\phi)}{d\tau} = I(\mu,\phi) - \frac{\tilde{\omega}}{2} \int_{-1}^{1} p(\mu,\mu')\, I(\mu') \, d\mu' \]

Two-Stream Solutions

\[ I^{\uparrow}(\tau) = \frac{r_{\infty}I_0}{e^{\Gamma \tau^*}-r^2_{\infty} e^{-\Gamma \tau^*}} \left[ e^{\Gamma(\tau^*-\tau)} - e^{-\Gamma(\tau^*-\tau)} \right] \] \[ I^{\downarrow}(\tau) = \frac{I_0}{e^{\Gamma \tau^*}-r^2_{\infty} e^{-\Gamma \tau^*}} \left[ e^{\Gamma(\tau^*-\tau)} - r^2_{\infty} e^{-\Gamma(\tau^*-\tau)} \right] \]

Two-Stream Parameters

\[ \Gamma = 2\sqrt{1-\tilde{\omega}} \sqrt{1-\tilde{\omega}g} \] \[ r_{\infty} = \frac{ \sqrt{1-\tilde{\omega}g} - \sqrt{1-\tilde{\omega}} }{ \sqrt{1-\tilde{\omega}g} + \sqrt{1-\tilde{\omega}} } \]

Two-Stream Solutions
(Non-Absorbing)

\[ I^{\uparrow}(\tau) = \frac{I_0(1-g)(\tau^*-\tau)}{1+(1-g)\tau^*} \] \[ I^{\downarrow}(\tau) = \frac{I_0 \left[ 1 + (1-g)(\tau^*-\tau) \right] }{1+(1-g)\tau^*} \]

Cloud-Top Albedo

\[ r = \frac{I^{\uparrow}(0)}{I^{\downarrow}(0)} \]

Adding-Doubling Solutions
(One Cloud Layer)

\[ \tilde{r} = r + \frac{r_{sfc}t^2}{1-r_{sfc}r} \] \[ \tilde{t} = \frac{t}{1-r_{sfc}r} \]

Adding-Doubling Solutions
(Two Cloud Layers)

\[ \tilde{r} = r_1 + \frac{r_{2}t_1^2}{1-r_{1}r_2} \] \[ \tilde{t} = \frac{t_1 t_2}{1-r_{1}r_2} \]
 

List of Topics